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Abstract—- This paper is concerned with modeling the response of a porous brittle solid whose pores
may be dry or partially filled with fluid. A form for the Helmholtz free energy is proposed which
incorporates known Mie-Griineisen constitutive equations for the nonporous solid and for the
fluid, and which uses an Einstein formulation with variable specific heat. In addition, a functional
form for porosity is postulated which depends on two material constants that control the added
elastic compressibility of porosity observed in porous rock. The irreversible process of pore crushing
is modeled using compaction and dilation surfaces to determine a scalar internal variable that
measures unloaded porosity. Restrictions on constitutive assumptions for the composite of porous
solid and fluid are obtained which ensure thermodynamic consistency. Examples show that although
the added compressibility of porosity is determined by fitting data for dry Mt. Helen tuff, the
predicted responses of saturated and partially saturated tuff agree well with experimental data.

1. INTRODUCTION

This paper presents a thermomechanical constitutive model for the response of a rock-like
material which is considered to be a composite of a multiply connected solid matrix whose
pores are partially or fully saturated with water. The main objective of any theory for such
porous materials is to use separate constitutive equations for the nonporous solid material
and the fluid to obtain a combined constitutive equation for the response of the composite
of the two materials. Here, specific constitutive equations will be developed which model
the full range of response from low pressure at room temperature to high pressure at high
temperature. Moreover, the proposed constitutive equations use an Einstein formulation
of the Helmholtz free energy with variable specific heat.

In many constitutive models, an elemental volume dr of porous material in the present
configuration is decomposed into solid volume dr, and pore volume dv, such that

de = de,+de,. dV =dV,+dV,. (1a,b)

where dV, dV, dV are the values of de. de.. dr. respectively, in a fixed reference configur-
ation. The porosity ¢ and its reference value ® are then defined by

- dv
dey 4P (2a,b)

¢ =4 Jv

Also, the Cauchy stress T at a material point in the medium can be separated into pressure
p and deviatoric stress T’ such that
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T=—pl+T. T-1=0. (3a,b)

where I is the unit tensor, A*B = tr (AB") denotes the inner product between two second
order tensors A, B, and T is measured positive in tension.

A constitutive equation for the dynamic compaction of ductile porous materials was
developed by Herrmann (1969), which assumed that pressure p is a function of the specific
internal energy « and a measure of distention x defined by

]

T ¢ “)

b

Carroll and Holt (1972a) modified the expression for pressure proposed by Herrmann
(1969) and related the pressure p in a dry porous material to the average pressure p¥in the
solid by the formula

p=1(l—¢)p* ®)

Later, Carroll and Holt {1972b) proposed a micromechanical model which considered the
porous material to be a spherical shell composed of an incompressible ductile material.

When the pores are not evacuated and the porous material is either partially or fully
saturated with a fluid. volumetric compression or expansion can cause changes in both the
average solid pressure p*and the pressure p, of the fluid which occupies the pore space. For
this case the pressure p is given by (Carroll. 1980)

P = (l—p)p*+op. (6)

instead of by eqn (5). This formula is rigorously derived from the balance of linear
momentum by neglecting acceleration and body force terms and assuming that the exterior
of the porous medium is loaded by a hydrostatic pressure p and that all pores are loaded
by the same pressure p.. However. the formula (6) does not provide a constitutive equation
for the average solid pressure p*or for the porosity ¢.

Typically. the total relative volume J and the average relative volume J, of the solid
are defined by

dr dr
J = . = . 7a.b
a7 Ty (7a.6)
and the expressions (1) and (2) are used to deduce that
[ - ¢
J = J. 8
(] K (D) (8)

Then, given a constitutive equation for the response p(J,, 0) of the nonporous solid material
as a function of J, and absolute temperature 6, it is usually assumed that the average
pressure p¥in the porous solid matrix is the same function of J, and 8 as that describing the
nonporous solid. so that

pr=pJ.0). &)

This assumption (9) ignores the effect of stress concentrations near pores in the solid matrix
and seems to predict an elastic response that is too stiff. To remedy this problem, the present
work models the added elastic compressibility observed in the porous material by proposing
a function for the porosity ¢ of the form
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=G 0. P,). (10)

where ¢, is a history-dependent parameter characterizing the porosity of the solid matrix
at zero stress and reference temperature 6,,.

A functional form for eqn (10) is proposed which attempts to model the response of a
brittle porous material. In particular. it is assumed that during compression, contact stresses
between grains cause the grains to fracture and break up into smaller grains which can be
further compacted. Upon unloading it is presumed that some grains lose contact before
others, causing an apparent added compressibility of the porous material relative to the
response associated with a uniform unloading of all grains. Moreover, it is assumed that
hysteretic effects of grain rearrangement are negligible so that isothermal (or adiabatic)
hydrostatic unloading and reloading occur on the same curve until additional grains are
fractured.

Other theoretical modeling of porous materials has been approached from the point
of view of a generalized continuum (Goodman and Cowin. 1972), as well as from the point
of view of mixture theory (e.g. Drumheller and Bedford. 1980 Nunziato and Walsh, 1980;
Baer and Nunziato. 1986: Drumbhelier. 1987a.b: Baer, 1988 : Embid and Baer, 1992;
Eringen. 1994 Li. 1994). For the general case of the mixture theory approach, the fluid is
allowed to flow through the porous material and the temperature of each constituent may
be different. Here. the partially saturated porous material is considered to be a composite
of two materials which are in thermal equilibrium so that both the solid and the fluid have
the same temperature 6. Also. for the dynamic applications considered here it is assumed
that the fluid does not have time to flow through the porous medium.

A set of constitutive equations for the dynamic compaction of wet porous materials
has been developed by Drumbheller (1987b) using a simplified version of mixture theory
(Drumbheller and Bedford. 1980). which assumes no relative motion of the solid and fluid
and accounts for different temperatures of the solid and fluid. In contrast with the work of
Drumbheller (1987b). the present theory proposes an explicit form for the Helmholtz free
energy that is compatible with Mie—-Griineisen type constitutive equations for the solid and
fluid, and it proposes a different procedure for modeling reversible and irreversible changes
in porosity.

Prediction of the fluid pressure in the porous medium is important because the devi-
atoric stress T’ is usually limited by distortional plasticity. with the yield strength of the
porous material being a function of both the pressure p and the fluid pressure p;. In
particular. the simplest assumptions of Terzaghi (faeger and Cook, 1976, p. 219) take the
yield strength to be a function of the effective pressure p.. which is defined by

pe=p=p. (1

Typically. the yield strength is presumed to be a monotonically increasing function of p,
which asymptotically approaches a constant value for large values of p.. Consequently, this
assumption would suggest that when a wet porous material is compressed the yield strength
and the effective pressure p, can remain low even though the pressures p and p, are quite
high. This means that the response of a wet porous material to dynamic shock compression
can be significantly influenced by proper modeling of fluid pressure p; and effective pressure
p.. However. it will be shown that the prediction of the effective pressure p, is quite sensitive
to errors in the prediction of the porosity ¢. Also. it will be suggested that at high pressure
the yield strength may remain high even though p, may be small.

The present work uses the thermodynamical procedures of Green and Naghdi (1977,
1978) to develop restrictions on the constitutive assumptions which ensure that the first and
second laws of thermodynamics are satisfied. After discussing rather general constitutive
equations for an elastically isotropic elastic—plastic response. specific constitutive equations
are proposed for the Helmholtz free energy of the composite material, which is assumed to
be a mass weighted average of the Helmholtz free energies of the solid and fluid constituents.
Within this context. the pressure p of the composite is determined by a derivative of the
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Helmholtz free energy which yields a functional form diffcrent from eqn (6) [with p¥given
by eqn (9)] when ¢ in eqn (10) depends on J.

One objective of the present development is to provide a simple theoretical structure
that retains sufficient generality to match certain features of experimental data. In this
regard, the compaction surface which determines the evolution of ¢, is characterized by a
function which can be used to match details of experimental data for pressure as a function
of the total volume during compaction. For increased flexibility the theoretical structure
allows this function to be a piecewise linear function which is specified by tabular data.
Also, the constitutive model allows the Mie—Griineisen form for the pressure of both the
solid and the fluid to be determined by tabular data for shock velocity as a function
of particle velocity, and Griineisen gamma as a function of relative volume for each
constituent.

The following sections provide a brief review (Section 2) of the thermodynamical
procedures proposed by Green and Naghdi (1977, 1978) and then discuss a theoretical
structure for general constitutive equations (Section 3). Section 4 presents specific consti-
tutive equations and Section 5 describes the procedure for determining constitutive con-
stants and functions which adequately simulate the experimental data of Heard ez al. (1973)
for dry, partially saturated and fully saturated Mt. Helen tuff. Also, examples are presented
in Section 5 which explore the influence of ignoring the added compressibility observed in
porous materials and which explore the response to shock loading to high pressure and
temperature.

2. THERMODYNAMICAL BACKGROUND

By way of background, let X denote the location of a material point in the reference
configuration and x denote the location of the same material point in the present con-
figuration at time ¢. Also, let F = éx/¢X be the deformation gradient and C = F'F be
the total deformation. Following the thermodynamic procedures proposed by Green and
Naghdi (1977, 1978) the local form of the balance of entropy may be written as

on = p(s+¢&)—divp, (12)
where p is the mass per unit present volume, # is the specific (per unit mass) entropy, s is
the specific external rate of supply of entropy, ¢ is the specific rate of internal production
of entropy, p is the entropy flux vector per unit present area, a superposed dot denotes
material time differentiation holding X fixed, and div denotes the divergence operator with
respect to the present position x. Furthermore, the quantities s and p are related to the

specific rate of heat supply r and the heat flux q per unit present area, appearing in the
balance of energy, by the expressions

s=—. p= g. (13a,b)

In general & may be separated into two parts
phE = —prg+pbC, (14

where g = 060,¢x is the temperature gradient with respect to the present configuration, so
that eqns (12)-(14) may be used to obtain

pr—divq = pn—pbZ’. (15)

Also, p- g denotes the usual scalar product between two vectors. In their work, Green and
Naghdi (1977, 1978) developed restrictions on constitutive equations by requiring the
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balances of angular momentum and energy to be identically satisfied for all thermo-
mechanical processes. By using the balance of linear momentum to eliminate the specific
body force, and the balance of entropy to eliminate the specific rate of heat supply r, it
follows that the balance of energy reduces to

P+ 0 =T D+ p0Z = 0. (16)

where y is the specific Helmholtz free energy and D is the symmetric part of the velocity
gradient L. such that

y=c—0n v=x (17a,b)

L=_.. D=4YL+L"). (17¢,d)

Also. ¢ is the specific internal energy. and the symmetry of the stress (T = T") resulting
from the balance of angular momentum has been used to obtain eqn (16).

3. GENERAL CONSTITUTIVE RESPONSE

In this section general constitutive equations are developed which explicitly model a
compressible porous solid under applied loads that create significant thermomechanical
coupling. The effects of plasticity on the response to distortional and dilatational defor-
mations can be modeled by introducing a positive definite symmetric tensor characterizing
plastic deformation C,. which is determined by an evolution equation for its rate. A large
deformation model for soils was developed by Rubin (1990), which used the work of Flory
(1961) to define a pure measure /,, of plastic dilatation and a pure measure C;, of plastic
distortional deformation by the formulas

I, =detC,. C,=1,""°C

I

p dertCo =1 (18a,b.c)
In that formulation /;, modeled the effects of porous compaction instead of the unloaded
porosity ¢, used here.

Alternatively. the work of Eckart (1948). Besseling (1966) and Leonov (1976) shows
that a theory of plasticity can be developed without introducing a specific measure of plastic
deformation (or strain). Instead of defining elastic deformation in terms of total and plastic
deformations and proposing an evolution equation for plastic deformation, this alternative
formulation focuses attention on the elastic deformation that causes stress by proposing an
evolution equation directly for elastic deformation. Specifically, it has been shown (Rubin
and Yarin, 1993 Rubin. 1994a.b) that for an elastically isotropic elastic—plastic material,
the relaxation effects of distortional plasticity can be modeled by defining an elastic dis-
tortional deformation tensor B, together with an evolution equation for its time rate of
change. This is accomplished by using the work of Flory (1961) to define

J=deatF. F=J 'F. detF =1. (19a,b,c)
and by using the work of Rubin and Chen (1991) to define
B.=FC,'F' detB.=1. (20a,b)
Then, recalling that

F=LF. J=JD-D. (21a,b)

c,'=-C,'Cc, . (2lc)
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it follows by differentiating eqn (20a) that the evolution equation for B; may be written in
the form

B, = LB, +B/L" -3(D-DB,~TA. (22)

In this alternative formulation the quantity ['A characterizes the relaxation effects of
plasticity on the evolution of elastic distortional deformation. Also, the tensor A in eqn
(22) requires a constitutive equation and is related to the expression for C;, by the formulas

FA=BJ(F "C.F ")B. A‘B,"'=0, (23a,b)

where the condition (23b) ensures that B, remains unimodular. Recently, Rubin and Attia
(1995) have developed a numerical procedure for integrating evolution equations of the
type (22), which is based on the work of Rubin (1989).

For the class of constitutive equations under consideration, the response functions ¥,
n, T, p, " are assumed to take the forms

Y=l n=ql), (24a,b)
T=T.B)—yl. ¢=4¢U.D), (24c,d)
p=p(L.B.g. & =E&(U.$,T.D). (24e,1)

where U denotes the set of variables
U= {J.p,.0.2,. 2. K}, (25)
the quantities %, and x. are scalar measures of elastic distortional deformation defined by

%, =B.-1. 2 = BB, (26a,b)
Kk is a measure of isotropic hardening. ¢ in eqn (24¢) models “artificial viscosity” which is
typically needed in wave propagation codes to eliminate oscillations near shock fronts, and
the tensor B is included in eqns (24¢.d) to account for the tensorial properties of T and p.

Motivated by the strain-space formulation of plasticity proposed by Naghdi and Trapp
(1975), a yield function g for determining plastic distortional deformation, a yield function
g. for determining porous compaction (¢, < 0) and a yield function g, for determining
porous dilation (¢, > 0) are introduced such that

g=9g(l') <0, g =g(U)<0. g4=g4U)<0. (27a,b,c)

Furthermore, the evolution equation for B, is given by eqn (22) and the evolution equations
for k and ¢, are given by

k=TK. ¢,=T, (28a,b)

where K is a function of U: and I'. ', and the tensor A in eqn (22) are functions of the
forms

I'=I(U.R), T,=T,U.R), A=A(U,B)), (29a,b,c)

with the rates R being defined by
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R=1JL.0. (29d)

Assuming that I' and I', are homogeneous functions of order one in the rates R, it follows
that the evolution equations (22) and (28) characterize rate-independent response.

The scalars I and ', are determined by loading and unloading conditions which ensure
that yield functions {g.g..¢4} remain nonpositive. In the present formulation, loading
corresponds to nonzero values of either ¢, or T'A. Since porous compaction and dilation
are assumed to be mutually exclusive processes, it follows that loading may be caused by
porous compaction or dilation (¢, # 0). or plastic distortional deformation (TCA #0), or
both. Moreover, since one or two yield surfaces may be active at any time, the various
possible loading and unloading cases are not standard so they have been recorded in
Appendix A.

Now, by substituting eqns (22), (24) and (28) into eqn (16) and multiplying the result
by J, it follows that

(7!/} Ry ‘W; ‘ﬁ'/; .o VL ‘ﬂ"/) R )
Po <M +7’]>0+ |:J[)(, (;/l‘f‘:p“ oo, {BL—;(BL . l)lb +4/)., (_\1; :B e —;(B n ‘I)I} —JT|-D
+p(,(ff' +I, {p(, iw

]vr[p)[) ‘f—” 1+2p, ﬁ"’" B;]-K+qJ(D-1) =0, (30)
((pur % CAn

|
where use has been made of the conservation of mass.
o = po. (31)

between the present value p and reference value p, of the mass density. Restrictions on the
constitutive assumptions (24) may be obtained by requiring eqn (30) to be satisfied for all
thermomechanical processes. In particular. it follows that

Y

==y T=-pI+T. jp=—p, N (32a,b,c)
T =2, BB e, B, (32d)
(e - Qe &) .
PO = Ar‘,,[ 00 f”]u[m Vo, Y B;]f\~qJ(D-l), (32¢)
('(f)ur Xy %>

are sufficient conditions tor egn (30) to be satistied tor all thermomechanical processes.
Notice that the constitutive equations are hyperelastic because the pressure p and deviatoric
Cauchy stress T’ are determined by derivatives of the Helmholtz free energy.

In view of eqn (32e) it follows that &’ characterizes the rate of internal production of
entropy due to porous compaction and dilation. plastic distortional deformation, and the
effects of shock loading. respectively. Further. in this regard it is recalled (Rubin, 1992)
that one statement of the second law of thermodynamics requires

pelli =0 (33)

to be valid for all thermomechanical processes.

For a compilete constitutive description an additional constitutive equation for the
entropy flux p must be specified. However. since heat conduction is neglected here this
constitutive equation is not supplied.
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4. SPECIFIC CONSTITUTIVE EQUATIONS

The purpose of this section is to present a specific set of constitutive equations for a
porous solid which is partially or fully saturated with a fiuid. This is accomplished within
the context of the constitutive theory of Section 3. Specifically, it will be assumed that the
Helmholtz free energies of the nonporous solid material and the fluid are known. Then a
form for the Helmholtz free energy of the partially saturated porous solid will be proposed
in terms of the Helmholtz free energies of the individual constituents.

Motivated by the Einstein form of the Helmholtz free energy for a fluid (Hill, 1960,
p. 90) and the work of Rubin (1987) on high compression of metals, it is assumed that the
specific Helmholtz free energy ¥, of the nonporous solid matrix material may be represented
in the form

Pl = poWb(do b 2) = polh (., 0) +3A.(J., 0)(at, —3), (34a)
. B CAVA)
Ya(J,.0) =Chlln [2 sinh {MW}}I—S’“(L) — 01, (34b)

where p,, is the reference density of the solid, y,, characterizes the response to dilatational
deformation, fi, characterizes the shear modulus. which may depend on (J,8), C is a
constant controlling the maximum specific heat. 6, and ¢, are functions of the relative
volume J, to be determined, and 7, is the constant value of entropy at zero temperature
and zero elastic distortional strain (%, = 3). Using the procedures of Section 2 and taking
J = J,, it can be shown that the specific entropy #.. the specific internal energy &, the Cauchy
stress T, the pressure p, and the deviatoric stress T, associated with the nonporous solid
response are given by

b, ,
n, = = o 1 (S5, ) + 15, (352)
{?lpxl - Hs Hs . 65
Mo = = 5 =M + (\[20 coth {20}—111 (2 sinh {20})} (35b)
N

Psolls = “E o0 (o, —3), (35C)
& = (Y, +0n) = e, (J,, 0) &, (35d)

C.0, 0,
Ly = '*,')*COIh {29}-}-&0, (35@)

’ ] - ("vﬂ\
Puts = 3 [“"_HW}W‘ -3), (35f)
T.= —pJ+T. (35g)

p, ,

]7.\ = - [)\0 ﬁ = psl (Jsﬁ 6) +psﬂ (35h)

dey, C, db, 0, .
Pa = “P~n|jd‘]\ + B} /. coth { }j|, (351)
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1 2, .
p::-—iai(ay—”, (35))
T, =J. A {B.—5(B.-DI}. (35k)

For convenience, the value of the constant 5, is determined so that the value of #, vanishes
in the reference configuration with {J, = 1,0 = 6,,B{ =1}

B.(1) = 0. (36a)

()s() 95() . GSO
o= —0C|— — 36b
N C‘“[%)O coth {290} In (2 sinh {200 R (36b)

where the value 6, is determined by the reference value of the specific heat at constant
volume. In this regard, it is noted that the specific heat C,, at constant volume and zero
elastic distortional strain (B, = I) becomes

0,
fe, )
(x;%:C,J%\, (37)
Slnh 20J

which shows that C, is the maximum value of C,,.

Furthermore, it can be shown by solving eqn (35¢) for 8 and substituting the result
into eqn (351) that the constitutive equations (35) are consistent with a Mie—Grlneisen
equation of the form

»J)

Pa _pSH(J\) = Pw [F'\I —SSH(JS)]‘ (38)

when 6, and &, satisfy the differential equations

1 df, 2 (J9)

o, wi) 39;
0. dJ. J (392)

dBw }L(-L) P }‘s(-].\)

el W .. . 39b

a, T T, T (39%)

In eqn (38), 7.(J,) is the Griineisen gamma, &4(J,) is the specific internal energy on the
Hugoniot, and p,(J,) is the pressure on the Hugoniot (neglecting strength effects), all for
the nonporous solid constituent. Given functional forms for 3, &4 and pgy, eqns (39) can
be integrated subject to the condition (36a) and

C.0, 8,
850( l) = gsH(l) - 7.42“9 coth {290 }a (40)
0

which ensures that p, = p,; and ¢, = ¢4 in the reference configuration (with J, = 1, 8 = 8,
B.=1).

Next, the fluid is assumed to be an inviscid fluid with no deviatoric stress so the
Helmholtz free energy ¢, of the fluid is taken to have a form similar to ¥, in eqn (34b)
using the relative volume J; of the fluid defined by
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_dy

= 41
Ji= g 4D

where dV; and du; are the elemental volumes of the fluid in the reference and present
configurations, respectively. Thus, y; is taken in the form

l//r = wf(Jf- 9) = C'H ln [2 Sinh {Gf(.]f)

20

}:] +&n(Jp) — O (42)

where 6; and &y are functions of the relative volume J,, C; is a constant controlling the
maximum specific heat, and #y, is the constant value of #; at zero temperature. Using the
procedures of Section 2 and taking J = J,. it can be shown that the specific entropy #;, the
specific internal energy ¢, the Cauchy stress T, and the pressure p, associated with the fluid
response are given by

. _ Fl//v N Hf Hf . Hi
Hy = He(Jp ) = — = ﬂm—FC.L( coth {29}~1n (2 sinh {29 , (43a)

. C0; )
g = &(J. 0) = (Y, +64) = '3' coth {;)—é}—i—sm, (43b)
T, = —pil, (43c)
- _ (ﬂ"/} ! dey | Cy db; O
P = P, 0) = —py ;ZI = _Pm{d‘]f + 2 deCOth 20( I (43d)

where py, is the reference density of the fluid. Again, the value ny is specified so that the
entropy #; vanishes in the reference configuration with

0:1) = 0y, (44a)

B O O ) O
Ho = — Cf[?_()“ coth {29;} —In <2 sinh {290}>j|. (44b)

where the value 8, is determined by the reference value of the specific heat at constant
volume C\,. which is given by

{ o 7°
Coy 26
e (45)

I AR )
smh;e

Ci

[t can also be shown by solving eqn (43b) for f and substituting the result into eqn (43d)
that the constitutive equations (43) are consistent with a Mie-Griineisen equation of the
form

i)
Ps—peuldy) = poo L(*" [er—ern(Jp)], (46)

when 6, and &, satisfy the differential equations
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I db, _ ()

— = = 47
0, dJ, J (472)
degg Tl Jr) P 21(Jy)
g = — = Ery- 4
dJ, - Ji e Pm * Jy i (47b)

In eqn (46). 7{(J;) 1s the Griineisen gamma, ¢y (J,) is the specific internal energy on the
Hugoniot and py(J;) is the pressure on the Hugoniot, all for the fluid constituent. Given
functional forms for v\ ¢y, and py,. eqns (47) can be integrated subject to the condition
(44a) and

0, f,
coll) =g (D)— " coth { le )

2 20,

which ensures that p; = py, and ¢; = ¢ in the reference configuration (with Jy= 1, 8 = 6,).

The constitutive equations (42)—(48) are used to model the response of the fluid when
it is compressed. Here, the details of vaporization and vapor pressure of the fluid will be
ignored. Consequently. these functions may be modified slightly to ensure that the fluid
pressure does not become too negative when the fluid is expanding past its zero pressure
volume. To this end. it is convenient to let dV, be the elemental volume of the fluid in the
reference configuration and define the value of saturation S of the pore by

dl.

S=

(49)

If the vapor pressure of the fluid is neglected then the pressure in the fluid vanishes until
the pores close sufficiently to cause the solid to compress the fluid. This physical process
can be modeled simply by assuming that the fluid fills the pores so that the relative volume
of the fluid J; is given by

dey de, (¢
hEan T drn T (5@) / (50)

Then the constitutive equation for the fluid can be extended so that the pressure nearly
vanishes until J; reaches the value Fi(8). causing zero pressure in eqn (43d)

pidi ) =0 when J, = F{(6). (51

More specifically. it is convenient to introduce an effective relative volume Ji(J;, ) defined
by

JJ. 0) = L. for J, < Fi(6), (52a)

bFA0)

) ‘ Ji—FA))
JiJo ) = F(th| | + b, tanh {—-- for J, > F:(6), (52b)

where b, is a positive constant to be specified. This function has the properties that J; and
its first derivatives with respect to J, and @ are continuous at J; = Fi(). Also, notice from
eqn (52b) that J; is bounded above

Jr < F(O)[1 45, (53)

so that the value of A, can be used to limit the value of the effective relative volume Ji(J,, 6)
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even when J; becomes large. This latter property is used to ensure that the pressure in the
fluid remains near zero during expansion with J; > F;(60).

In order to model the response of a partially saturated porous material it is assumed
that the solid and fluid have the same temperature 6 and that the Helmholtz free energy
of the composite is a mass weighted average of the Helmholtz free energies of the solid
and the fluid ¥, so that

(dm)y = (dm)p+ (dmoyy, (54

where the element of mass dm of the partially saturated porous material is related to the
elements of mass dm, and dm; of the solid and fluid, respectively,

dm = dm,+dm,. (55)

Dividing eqn (54) by dV and using the reference values po, p, pp of the partially saturated
porous material, the solid and the fluid, respectively,

Po=Gpe Po=Gr- Pro=Th (562.b.0)
it can be shown using eqns (1b), (2b) and (49) that
po = (1 =D)py+ SOpy,, 57
and that eqn (54) reduces to
po¥ = (1 = @i, 0,2)) + SOpose( . 6). (58)

The form (58) makes the simple assumption that the functional form for the Helmholtz
free energy of the porous solid is the same as that for the nonporous solid and that porosity
only influences the value of the Helmholtz free energy through the dependence of the
relative volume J, defined in eqn (8). Examination of experimental data on Mt. Helen tuff
(Heard et al., 1973) indicates that the magnitude of the bulk modulus of the dry porous
material at zero pressure is smaller than would be predicted by the assumption (58) if the
porosity remains constant during elastic loading and unloading. In order to model the
added elastic compressibility observed in porous materials, it is assumed that the porosity
¢ can change during elastic response and a functional form of the type (10) must be
specified.

To this end, let F,(8) be the value of J, which causes the pressure p,, in eqn (35h, i) to
vanish, so that

pa(Ji,0) =0 when J, = F(6), (39

and assume that the reference configuration is stress free with J, = 1 so that F(f,) = 1.
Considering a dry porous material, it is assumed that when J, = F,(6), both p,, and p vanish.
In this specific unloaded state (68 = 6,), porosity ¢ is denoted by ¢, and the corresponding
value of J is denoted by J, using eqn (8),

1—
Jo=17 (60)

u

S

For compacted states only (J < J,), the specific functional form of eqn (10) is given by
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b .
G py) = d)u[l - %tanh {g(l —p P I)H, 0< % <1, (6la,b)
where the auxiliary parameter /3 is defined by
Jll
f= g (62)

the parameters ¢ and b are non-negative material constants that control the added com-
pressibility observed in porous materials, and the condition (61b) ensures that ¢, and ¢,
have the same sign (since 0 < ¢, < 1). The functional form (61a) was chosen to have the
following properties: as the material is compressed with J decreasing from its unloaded
value J, the porosity ¢, decreases relative to its unloaded value ¢,; this decrease in ¢,
occurs over a smaller range of J as the material becomes more nonporous and ¢, decreases ;
¢, = ¢p,whenJ = J,and f = 1;and ¢, = | when the material is totally dilated with ¢, = 1.
Also, this form of ¢, is chosen so that the parameters ¢ and b may easily be determined
from experimental data. as will be demonstrated at the end of this section.

For expanded states (J > J,), it follows from eqns (8) and (59) that the value of
porosity ¢ (J. 0) associated with zero pressure p,, is given by

J0) =1 (Ii(b\)F 0 63
o0 =1=(" 7RO (63)

It is assumed that the solid matrix is rather brittle so that it cannot maintain a significant
negative value of pressure without creating substantial increase in porosity. Thus, it is
expected that in expanded states (J > J,) the value of solid relative volume J; will remain
close to the value F(#) as the material dilates. To model both compressed and expanded
states, the functional form for porosity is specified by

O 0.¢,) = P(d,.b) = &, for ¢, >¢, (64a)

¢<J.a.¢u>=¢5<<p].¢\):m\—b\uwmanh[}ﬁf‘l‘_ﬂﬂ for ¢ <. (64b)

respectively. where A, is another constant. Now, using eqns (8) and (64b) it follows that
during dilation (¢, < ¢.) the relative solid volume J_ is given by

J. = F\(()){l + b tanh {;,d:l__q;'))ﬂ < FO)[1+5b] forg, < s, (65)

so that the value of A, can be used to ensure that the value of pressure in the solid remains
near zero during expansion (¢, < ¢,). even as J becomes large.

Using the definition (63) it follows that for given values of dilatation J and temperature
6 the pressure p, will vanish when ¢ = ¢, and J, = F,(0). Assuming that the porosity is
given by eqn (64a), eqn (8) may be rewritten in the form

("™, 66
¢, = _(\ J /) < (66)

Consequently. comparison of eqns (63) and (66) indicates that for these same values of J
and 0, the condition ¢, > ¢, is satisfied whenever the solid is in a compressed state [/, < F(6)
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and p, > 0}. Furthermore, the functional form (64) smooths the transition from the com-
pressed state (¢, > ¢.) to the expanded state (¢, < ¢.), since ¢(¢,. ¢,) and its first deriva-
tives with respect to ¢, and ¢, are continuous when ¢, = ¢,. Also, the functional form
(64b) causes the porosity ¢ to increase rapidly as the material is expanded (¢, < ¢,) with
J increasing, which simulates loss of contact of pieces of a fractured material.

Now, with the help of eqns (21b). (22). (26a). (34). (35), (42), (43), (52), (63) and (64),
the expression (58) for the Helmholiz free energy may be substituted into the energy
equation (16) to deduce that

. o
J '[—(I—Q)p.\um S®pn:+J(p,—pi) @ -d)” —SOp; - +pm]9
o o0
;A N o) A .
+[—{(1—¢)ﬁg+¢ﬂ?‘—J(l’\‘P?‘)(f¢) 0 0 4. )}lw-cm’ } D+ pb¢
| o, o O,

+ {([L'Pr*) ;g ;?]él. —T -0 'a(d-A)+g(D-1) =0, (67)

where the pressure pifin the fluid is defined by

(“J‘,
=iy (68)

Also, 1y and p;in eqns (67) and (68) are the functions defined in eqns (43a.d), respectively,
with the argument J; replaced by the function J; so that

He = Wl 0y, pe = pulJi 6). (69a,b)

It then follows that sufficient conditions for satisfying (67) for all thermomechanical
processes are

. . b &,
poti = (1 =D)p .+ SOpyn— J(p.—pi) = j j; +S®p; 9‘. (70a)
— R e T N
p=—=d)p +¢pf—Jip, p')(ﬁd)u 27 Yeg s (70b)
T = (1—-¢)T.. (70¢c)
plE = pbi+pbZ, +p0Z. pHE, = T(1—®)J A1+ A), (70d,¢)
1 u_

where T is given by eqn (32b) and &j. &, &, characterize rates of internal productions of
entropy due to: plastic distortional deformation ; changes in the unloaded porosity ¢, ; and
shock loading effects, respectively. Also. the internal energy associated with eqns (58) and
(70a) becomes
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N . N * (ﬂ(i) [d)x (:‘il
Pot = pa(f~ )y = (1 =D)p i+ Sbp, e, -0 J(/L—p.»)[d)\ a0 —S(I)pr% . (71)

where the internal energy , of the fluid 15 the same function as eqn (43b) with the argument
Ji replaced by the function J, given by egn (32).

Notice from eqns (52a). (64a) and (68) that for compressed states with (¢, > ¢, and
Ji < F}) the expression (71) reduces to the simple form

poi= LL=D)pyi s SOpe,. (72)

which represents a mass weighted average of the mternal energies of the solid and fluid
constituents. Also. under these same conditions the tormula (70b) for the pressure becomes

p=(L @ +opp - Jp. 4/1,)(3_ (73)
{
which retains a dependence on the added elastic compressibility of porosity characterized
by ¢ cJ with ¢ = ¢ (J. ¢,). This latter result is due to the assumption that the Helmholtz
free energy. which is substituted in the thermodynamic restriction (32¢). is a mass weighted
average of the form (58). The more complicated formulas (70b) and (71) apply when either
the solid or the fluid is expanded bevond its zero pressure density and the approximate
functions (52b) and (64b) are employed. Furthermore. comparison of eqns (6) and (73)
indicates that for compressed states the average pressure in the solid p¥is given by

. J(po=po C
= — . 74
! P (=) f (74)

which is influenced by the Auid pressure and the added compressibility of porosity. Notice
that when the solid and fluid pressures are equal (p, = p,} the average pressure pX*is equal
to p.. which is consistent with & homogeneous pressure field in the solid matrix material.
Next. implications of a statement (33) ol the second law of thermodynamics are
considered which require 2" in eqn (70d) 1o be non-negative. Notice from eqns (35) and

(70c) that B, equals the identity tensor I whenever the deviatoric stress vanishes,
B. =1 whenever T = 0. (75)

Motivated by the assumption that plastic relaxation effects limit the value of deviatoric
stress, the tensor A is specified in the form

Ao [B;_ " : .IM. (76)

which satisfies the restriction (23b) and ensures that plastic relaxation effects cause B; to
evolve towards the unit tensor I. Now. since B! 1s unimodular and positive definite, the
invariants of B may be expressed in terms of its eigenvalues and it may be shown that

‘d

B-I B. "“1=>3 Alz=0. (77a.b.c)

Furthermore. since (1 —®)/. 'i* is non-negative and the yield function g(U) in eqn (27a)
can be specified so that I' 1s non-negative. it follows that the dissipation due to plastic
distortional relaxation eftects is non-negative for all processes.
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ply = 0. (73)

Also, the usual form for ¢ in eqn (70g) is specified so that the dissipation effects of shock
loading are non-negative for all processes.

pbZ, = 0. (719)

In order to specify forms for the yield functions for porous compaction g, and dilation
ga Which ensure that the dissipation due to porosity changes is non-negative for all processes,

Pz, > 0. (80)
it is convenient to use eqn (68) and define the effective pressure

pe =p—pf 81)

Specifically, it will be shown that when « is restricted by the condition
a<]l, (82)
the restriction (80) on the functional form (70f) prevents porous dilatipn (¢, > 0) when
the effective pressure p. is positive and prevents porous compaction (¢, < 0) when p, is
negative. To this end, it is necessary to first show that p, has the same sign as the quantity

(p, —p¥) and then show that the product (2¢/é¢,)(6¢,/8¢.) is positive. Thus, with the help
of eqns (60)—(62). (64) and (70b) it can be shown that

p. = [1 —, in?J'}(pr/’?‘) for ¢, = ¢, (83a)
[1 -9, ~J‘f,‘}(p,—pr)
- ' - 1 < ¢, 83b
De Cosh:{d’\‘ﬁl } or ¢, <¢ (83b)
b(l—9,)
where
1—¢, —Jﬁiz‘)/[ = 1“¢u+¢uztanh |:qf (l_d’\l)(ﬁ—l)}* j‘)(l_(f)u)ﬁ ‘
( ' cosh? [(7 (1—¢)(B— 1)]

(84)

Moreover, since eqn (84) is a monotonically increasing function of £, its minimum value
occurs when f§ = 0, so that

o,

| —¢,—J
¢ cJ

(85)

anh Sh(1 — '
= (1 —qﬁ‘,)[l —atdnh bal ¢u)/¢u}:| > 0,

h( 1— ¢u)//¢u

which is positive since @ < | and 0 < ¢, < |. This proves that p, has the same sign as
(ps—p¥). Next, it can be shown using eqn (64) that (ﬁ(f)/(?qh) is positive, so that it only
remains to show that (é¢,/d¢,) is positive. This is accomplished by using eqns (60)—(62) to
deduce that
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?(j _ l—;tanh {'{?"(I—Qbu)(ﬁ—l)}—k _ a-{(];¢u)ﬁ_1}/¢u ’ (86a)
P ¢ cosh® {d)(l—qsu)(ﬂ—l)}

U

A sinh {7 u~¢u)(ﬁ—1)}
(¢> 2ab(] ) @

(
=] = —[(1—=¢,)p—1]
cJ\ 2o, cosh’ {qf(] —¢)(f— 1)}

- ., (86b
e (S

which indicates that as a function of J the quantity (¢¢,/d¢,) has: a local minima for J = 0
with 8 = oc ; a local maxima for J = (1 —®)/(1 —¢,) with § =1 and a local minima for
J=1—-® with § = 1/(1 —¢,). Moreover, it can be shown that

Co, . u
-z —al— . 7
(‘-(/5“>mm|:l a.l h]>0 (87)

Thus, in view of the restrictions (61b) and (82) it can be seen that the quantity 0¢,/d¢, will
remain positive.

The effect of elastic distortion on compaction and dilation has been considered pre-
viously (e.g. Rice and Tracey, 1969 ; DiMaggio and Sandler, 1971 ; Gurson, 1977) and is
included in the general constitutive equations for compaction and dilation surfaces of the
forms (27b,c) which include dependence on %, and «,. However, for simplicity this direct
dependence on elastic distortion 1s neglected here and the restriction (80) on porous
compaction and dilation is satisfied by introducing a compaction surface of the form

g =p.—h(J. O (¢) <0. flg) =0, (88a,b)
and a dilation surface of the form

go = —p.—h(J. Kk, <0, wrg >0, (89a,b)
where f(¢) is a non-negative function which is determined by hydrostatic dry compaction
data, w4 is a positive constant which determines the dilation response, and it is tacitly
assumed that p, is a decreasing function of ¢,. Also, h(J,,8) is a positive function which
controls the response when the temperature reaches the melt temperature 0y (J;) of the

solid. For simplicity, (/.. #) 1s specified by
hJ,.0) =1 for 0 < 8,, (90a)

/O (J) — 0 \!

h(J. 0) = iy + (1 —hM)(\\()M_\(JJ o, / for 6=40,, (90b)
where the McAuley brackets are defined by
(x> = Lk ). 1)

hnm is a small positive constant and # is a non-negative constant.

The forms (88) and (89) were chosen to model the following physical limiting cases:
(a) for compaction of a dry material (with vanishing p¥) the pressure p = p, is allowed to
become arbitrarily large as ¢ approaches zero. since f(¢) should become unbounded in
this limit ; (b) for compaction of a dry material the porosity ¢ is driven to zero as the solid
material melts (with 0 > 8y,,), since 4(J,, §) drops to the small positive value of &y which
causes added compaction and domination of the singularity of f(¢) as ¢ approaches zero;
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(c) for compaction of a wet material (with pf¥> 0) the effective pressure p, approaches the
small value hyf (¢) as the solid melts (with 8 > 6,,,), since f(¢) remains bounded for ¢ > 0
(this also ensures near pressure equilibrium between the solid and the fluid in this limit) ;
(d) for dilation the magnitude of p, becomes small as the solid melts. Further, in this regard
it is noted that experimental data are not available to provide details of the functional form
for h(J,, ), so that eqns (90) merely represent a simple form that causes physically reason-
able material response in these various extreme limiting conditions.

For the examples considered in the next section on hydrostatic loading, it is not
necessary to specify a specific functional form for the yield surface g in eqn (27a) which
limits the amount of distortional elastic deformation by plasticity. Nevertheless, for any
specified functional forms for the yield, compaction and dilation surfaces it is possible to
determine expressions for I in eqns (22) and (28a) and I, in eqn (28b) by loading/unloading
conditions, as discussed in Appendix A.

To complete the constitutive theory it is necessary to specify a functional form for the
solid shear modulus g, in eqn (34a). To this end. the bulk modulus K, associated with the
pressure p,, in eqn (351) is defined by the expression

(p.\!

A

RN

ko= ~ 92)

where the derivative is taken holding the entropy »,, constant. Now, with the help of the
expressions (35b.i} it may be shown that

d:i:\(l C. dlg\ HS
K,=pyl| —+—= coth {— > |. 93
f [djf 2 dye {20” 9

Next, eqn (35k) is used to identify the term J ' fi, as the effective shear modulus. Then, the
effective shear modulus is assumed to be related to the bulk modulus K;; and the constant
Poisson’s ratio v by the expression

3(1—=2v)
— UK,
21 +y) Y

a, = (94)

Similarly. eqns (43a.d) may be used to express the bulk modulus K; of the fluid in com-
pression [J; < F(#)] in a form similar to eqn (93)

K =—] pi A q,:f:ﬂ’ (:* izﬁf th Or (95)
f t‘(«,JI N = Py 4J° + 3 dJ; Sy 2w0( |

Since computer codes which predict the dynamic response of materials require an
estimate of the sound speed in the material to control the time step size, it is desirable to
develop an estimate of the bulk modulus. To this end, the simplified expression (73) for
compressed constituents (¢ = ¢,. J, = J;) is used together with a definition of the bulk
modulus K to deduce that

p J oo J o T p ¢
K = —J— = ———— -— . - 3 I - .
J= [1 : }(1 ({)}1&\+[1+¢) N] Ko+ (p, p,)[ZJaJ Sy

(96)

In developing the expression (96), derivatives of p, and p, with respect to J, and J,
respectively, were approximated by the formulas (92) and (95), even though the entropies
1, and n; cannot both be held constant simultaneously. Next, it is noted that in the absence
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of fluid pressure the unloaded state (J, = 1. f = 1) at reference temperature 6, yields the
expression

Ko = {(l=¢p )l —a)y K, 97)

for the unloaded value K, of the bulk modulus in terms of the unloaded value K, of the
bulk modulus of the solid. This expression shows that the value of a can be determined by
the value of K, of the dry porous material.

At this point it is worth emphasizing that since the constitutive equations developed
here are hyperelastic. the pressure p, and p, are determined by eqns (35h) and (43d). This
is in contrast with a hypoelastic constitutive equation which integrates an expression for
the rate of change of pressure using a specified form of the bulk modulus.

5. DETERMINATION OF CONSTITUTIVE FUNCTIONS FOR MT. HELEN TUFF

In this section, attention is focused on determining a consistent set of material constants
and functions which model the response of Mt. Helen tuff to hydrostatic isothermal loading
for dry and partially saturated conditions as determined by the experiments of Heard e7 al.
(1973).

The constitutive equations of Section 4 require characterization of the response of the
porous solid matrix by the material constants and functions

- Cotlaovl s ipad) et O (98a,b)
Lahl. ThlL FAOY (98¢.d)

D0, L) g O ) kg (98e.1)
(g(U). K. (98g)

and characterization of the fluid by the material constants and functions

oo Crotlg ). :/’t'H(-]tL(‘?uH‘Jr)-".'f(-]r):‘ (99a.b)
LS. b F()) . (99¢.d)

and specification of the initial values of {B..x. ¢,) used to integrate the evolution equations
(22) and (28a.b). The reference density p, of the mixture is determined by the expression
(58). Also, for all calculations in this section. B, is set equal to L.

If strength effects are ignored in the solid and the Hugoniot data are obtained from
shock experiments on material which is initially in a stress-free reference state, then the
internal energies ¢,y and &, are related to the pressures p, and pyy by the formulas

putai () = \pa ol —J0). (100a)
Pt (Je) = Lpo I =), (100b)

Moreover. the Hugoniot pressures p.,; and pyy can be related to the shock velocities D, and
Dy and particle velocities u, and u,, of the solid and fluid, respectively, by the formulas

Pt = paoDu. pry = proDiuy. (101a,b)

with the relative volumes J/_and J- given by
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Table 1. Initial mass density p,: comparison of com-
puted values using egns (57) and (103) with measure-
ments of Heard et al. (1973)

Saturation Theoretical Experimental
A po (Mg m ) Po Mg mgl)
0 1.44 1.48
0.69 1.70 1.64
0.995 1.82 1.86
U, up
Jo=l—— Si=1——. 102a,b
L R (102a,b)

Heard et al. (1973) measured the average grain density p, and the reference porosity
®@ in the range 0.35-0.39 for Mt. Helen tuff so that py, ® and py are specified by

P =232Mgm *, ® =038 py=1Mgm*. (103a,b,¢)

Table 1 compares the values of p, calculated using the specification (103) and the formula
(57) with the measured experimental values of p, for dry (S = 0), partially saturated
(S = 0.69) and near fully saturated (S = 0.995) material. Given the measured range of
initial porosity, these theoretical values of p, are considered to be reasonable.

Although this tuff is not a pure material, it is assumed that the functional forms for
D,(u,) and v,(J;) can be related to those given for silicon dioxide by multiplying by
an appropriate function of the ratio of the reference densities. Using the equation of
state reported by Ree (1976a) and noting that the reference density of silicon dioxide is
2.65 Mg m?, the functional forms for D, and y, characterizing tuff are specified by

'/). 12
D(u,) = <ﬁ) [3.69] for wu, <0, (104a)
2.65\'"
D,(u,) = <272> [3.69 + 1.85u, —0.6374u2 +0.16695u —1.1893 x 10~ 24
—9.0375% 10 “u]. for u, > 0. (104b)
1Y 1
w(J) =05+ |:‘,fs (5) —0.5] 2J,) for J, < 2 (104c)
v (J) = 2.65 0.6+ 1 1} fi l<J<1 104d
A CETYI R VA or gs4sh (104d)
(L) = 7. (1) = 0.5253 for J, > 1, (104¢)

where D, and u, are measured in km s~ '. In eqns (104), D, and y, are scaled so that the
reference values of the bulk modulus and p7, for tuff are equal to those for silicon dioxide.
The extension (104c) for high compression was suggested by Young (1994).

Similarly, using the equation of state of water reported by Ree (1976b), the functional
forms for D¢ (u;) and y;(J;) are specified by
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D{uy) = 1.4829 for u; <0, (105a)

Di(ug) = 1.4829 +2.1057u, — 0174447 +0.0100851] for u; = 0, (105b)
o el S

() = 0.5+ [;4(0.45)—-0.5] (\)4?) for J; <045, (105¢)

v ) = —239.7034+3081.871 — 1634591 +46506.6* —76706.8V*

+73499.317° —37987.41° +8192.561" for 045<J; <1, (105d)
%

1.0018J.. (105¢)

() = 71y 2 0.5348, for Ji>1, (105f)

where again D, and u, are measured in km's ' and the extension (105¢) for high compression
was suggested by Young (1994).
The reference temperature is specified by

6, = 300 K. (106)

and the values of {C.. 0,. .0, were suggested by Young (1994) to be

C.=1247Jkg 'K '. 04, =1000K, (107a, b)

¢, =4157Jkg 'K ', 0, =100K. (107c,d)

Using these specifications together with linear interpolations of the functions {D(u),
7). De(up), (I}, eqns (39) and (47) were integrated numerically subject to the reference
conditions (36a). (40). and (44a), (48) to generate tables of the functions 6,(J,), ex(Jy), 0:(J;)
and ep(Jp), and of their derivatives up to order three. which are needed to determine
derivatives of the shear modulus i, in eqn (94). Also. the expressions (351) and (43d) were
used to solve eqns (51) and (59) for temperature to generate additional tables of F,(6) and
F () and their first derivatives. In this regard. it is noted that eqns (51) and (59) have no
real solutions for temperature when the relative volume becomes smaller than certain
critical values. This indicates that it is impossible to cool the material sufficiently to cause
the pressure to vanish at high levels of compression.

The values of b, and b, are specified arbitrarily by

ho=10 . h =10 ", (108a,b)

but they could be determined by attempting to match maximum tensile values for p, and
pr. To check the computer coding of the constitutive equations, loading along the Hugoniot
(from J = 1) and unloading along an adiabat or an isotherm (to J > 1) were simulated for
both the solid and fluid, and the results for pressure and temperature are shown in Fig. 1.
To calculate the loading along the Hugoniot the internal energy was specified by one of the
formulas (100a.b). Since the thermal effect in the solid is relatively small the adiabat and
isotherm are close to one another so the adiabat is not shown in Fig. 1(a—). For the solid,
the value of ¢ in eqn (61a) was set equal to zero so that ¢, = ¢,. Also, the values of ¢, and
® were specified by 10 * to simulate the response of a nearly nonporous solid. Notice from
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Fig. 1. Shock loading Hugoniot curves with adiabatic or isothermal unloading for nonporous tuff
(a ¢)and water (d. e).

Fig. 1(a) and (c) that the analytical exiension of the constitutive equation for the solid into
the expansion region causes the pressure in the solid to remain near zero and the porosity
¢ to increase rapidly as J expands greater than the value F(#) associated with zero pressure.
This simulates increased porosity due to failure in tension. The results for water shown in
Fig. 1(d) and (e) show more clearly that the formulation causes the pressure to remain near
zero at the appropriate values of J, [J; = F(f)]. The relatively complicated structure of the
isotherm of water shown in Fig. 1(d) for J, < 1 is due to the complicated form of y(J;)
given by eqn (105d). As a further test of the computer simulation, the Hugoniot curves
shown in Fig. 1(a.d). which were calculated using the constitutive equations of Section 4,
were compared with the analytical forms (101) and shown to be identical. This indicates
that the integration of eqns (39) und (47) is quite accurate.

Figure 2 shows the experimental data for dry (S = 0) Mt. Helen tuff measured by
Heard er al. (1973) for isothermal hydrostatic loading and unloading from various pressures.
Here, the unloading curve from 3.9 GPa is assumed to be elastic and is used to determine
the values for the constants ¢ and A in eqn (61a), which are given by

a=0.657. h=1.15 (109a,b)

Specifically. since the material is dry and at reference temperature 6, the unloaded value
of J,is J. = 1. so that ¢, = 0.240 for this unloading curve. Using this constant value of ¢,
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Fig. 3. Influence ot the parameter A tor solt response with ¢ = 0.637 : comparison with stiff response
(¢ = 0) and comparison with unloading experimental data. Also. influence of changing ¢, on elastic
loading curves for soft and stuff responses.

the elastic compression curve can be calculated for ditferent values of @ and b. Figure 3(a,b)
shows the isothermal response for ¢ given by eqn (109a) and various values of b, as well as
the result for ¢ = 0. which causes loading at constant porosity (¢ = ¢,). The value of a
determines the slope of the unloading curve at zero pressure and the value of b controls its
shape. Moreover. the curve for ¢ = 0 which causes compression at constant porosity shows
that the added compressibility of porosity (¢ > 0) is needed to match the experimental
data. For convenience, the material associated with the specification (109) will be referred
to as the soft material and the material associated with the specification a = 0 will be
referred to as the stiff material. Figure 3(c.d) shows isothermal compression for various
constant values of unloaded porosity ¢,. In particular. notice that shape of the compression
curve for the soft material [Fig. 3(c)] change significantly as the material is compacted and
¢, decreases, whereas the shape for the stiff material [Fig. 3(d)] is much less affected by
changes in ¢,

Another indication of the need for this added compressibility of porosity is shown in
Fig. 4. which compares the initial elastic loading curves for the soft and stiff materials (each
with ¢, = ®) with the experimental compaction curve. This figure indicates that the elastic
wave speed associated with the soft material will be reasonable and that the initial wave
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Fig. 4. Comparison of stiff (¢ = 0) and soft (b = 1.150) material response at constant porosity with
loading and unloading experimental data.

speed for the stiff material will be much too fast. Also, the experimental data shown in Fig.
4 indicate that the initial portion of the compaction curve (loading) may not be rep-
resentative of the elastic response of the partially crushed material, because the unloading
curve exhibits a substantially softer response.

In the remaining simulations the initial value of ¢, is taken to be

¢, =d for =0 (110)

Instead of determining 'y, by the consistency conditions discussed in Appendix A and
integrating the evolution egn (28b). the value of ¢, is determined by satisfying the com-
paction and dilation constraints g. < 0 and g, < 0 directly. More specifically, trial values
g¥and g¥ of the compaction and dilation surfaces g. and g, are determined by assuming
that ¢, remains constant. If g*and ¢ are both nonpositive then ¢, is unchanged. If g¥is
positive then compaction must occur and ¢, is decreased iteratively until g. = 0. On the
other hand, if g¥ is positive then dilation must occur and ¢, is increased until g4 = 0.
Also, in the remaining simulations the value of x4 is arbitrarily specified to be

K, = 10.0 MPa. (111)

which keeps the magnitude of effective pressure p, relatively low during dilation. Moreover,
for the isothermal simulations considered next it is not necessary to specify values for Ay
and » characterizing the function # in eqn (90b), since & = 1 for 6 = 6,.

Once the material constants characterizing the thermoelastic response are specified,
the value of f(¢) in the compaction surface (88a) can be determined by matching the
experimental isothermal (6 = 6,,; # = 1) loading curve for the dry material. This is done by
iteratively solving for the value of ¢, which causes g. to vanish for each of the experimental
points. Thus, the isothermal loading curve of the theory exactly reproduces the experimental
loading curve once compaction occurs (g. = 0). The isothermal response to cycles of
loading, unloading and reloading for the soft and stiff materials are shown in Fig. 5. Figure
5(a) shows that the soft response matches the experimental data quite well for unloading
from pressures lower than 3.9 GPa. even though the material parameters (109) were
determined by matching only the unloading curve from this high pressure. Figure 5(b)
shows that the elastic unloading of the stiff material. which occurs at constant porosity,
does not capture the correct unloading response at any pressure, even though the loading
curve is correct. In this regard. it should be mentioned that the analysis of Bhatt et al.
(1975) suggests that pore recovery during unloading from 3.9 GPa is a dissipational process.
In contrast, here this pore recovery is modeled as a reversible elastic process because
unloading and reloading occur on the same curves until the compaction or dilation con-
straints are activated.

Figure 5(c) shows the calculated forms of the compaction function f(¢) for both the
soft and stiff materials. In order to extend the applicability of the theory beyond the range
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(Prin < ¢ < @) determined by the experimental data, analytical extensions for f(¢) are
specified by

A
f(¢) = g:‘ for (j) < ¢mm~ (llza)
ftpy=0 for ¢ =, (112b)

where ¢, is the minimum value of ¢ determined by the experimental loading curve. The
values of the constants 4 and m are determined by demanding continuity of fand df/d¢ at
¢ = Pmin. 50 that

df
(bmm _d_d_) (¢|mn)

M= ey A= e (P (113a,b)

For the soft material 4. m and ¢, are specified by
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A=0872MPa. nm =416, ¢, = 0.132, (114a,b)

and for the stiff material 4. m and ¢,,,, are specified by

4=1.03MPa. m=366. ¢, =0.105. (115a,b)

The functional form (112a) includes a singularity as ¢ approaches zero. which is
necessary for satisfaction of the compaction constraint as the pressure increases and the
material response is dominated by that of the nonporous solid. In addition, for numerical
purposes it may be desirable to ignore small changes in porosity as ¢ approaches zero by
setting /' = x when ¢ decreases below some critical value. Also, if detailed experimental
data are not available, then it is possible to specify f(¢) in terms of a few material
constants using one of the analytical forms that have been developed (e.g. Bhatt et al.,
1975 ; Butkovich, 1973 : Carroil and Kim, 1984 ; Oh and Persson. 1989 ; Wang, 1994).

At this point, all the material parameters characterizing isothermal response have been
specified. so that the following simulations of nearly saturated response and partially
saturated response test the predictive capability of the theory. Figure 6 shows a comparison
of theoretical predictions with experimental data for isothermal compaction of nearly
saturated (S = 0.995) matenal. Figure 6(a—d) shows the response of the soft material and
Fig. 6(e—g) the response of the stiff material. The experimental data in Fig. 6(a.c) exhibit
the results of two known phase transformations of water: one from liquid to ice VI at
about 1.0 GPa and one from ice VI to ice VII at about 2.2 GPa (Reser. 1979, p. 525). These
phase transformations of water are not modeled by the constitutive equation which is based
on the shock data (105).

The theoretical predictions of the soft material [Fig. 6(a)] and the stiff material [Fig.
6(e)] both indicate good agreement with the experimental data. In order to better understand
this response. additional simulations were performed which : (a) eliminated the compaction
constraint by setting f = oc, and (b) caused pressure equilibrium between the solid and the
fluid (p. = 0) by setting = 0. The simulations in Fig. 6 denoted by Theory used the
functional forms for f(¢) shown in Fig. 5(c). which were determined by the experimental
dry loading curve.

For the soft material the effective pressure [Fig. 6(b)] remains low enough that the
constraint due to the compaction surface is never activated, so the responses predicted by
the Theory and f'= x in Fig. 6(a--d) are identical. This indicates that the model (61a) for
the added compressibility of porosity which causes ¢ to decrease during compression at
constant ¢, predicts reasonable response for the nearly saturated case. even though it was
determined from dry data. This conclusion is further supported by the fact that the stiff
material with f = o shown in Fig. 6(e) predicts much too stiff a response, since porosity
remains constant during the compression [see Fig. 6(g)]. In this regard. it is also noted from
Fig. 6(b) that as compression increases the effective pressure increases to a maximum and
then decreases to a negative value. at which time the dilation constraint is activated. This
indicates that the model (61a) for the added compressibility of porosity does not accurately
predict details of the material response at high pressure because the effective pressure is
expected to remain positive in this situation. However. the overall response predicted by
the model remains reasonable because the dilation surface keeps the effective pressure from
becoming too negative. Moreover, even though the dilation surface is activated [when ¢,
increases in Fig. 6(d)] the porosity ¢ in Fig. 6(c) continues to decrease.

The responses of both the soft and stiff materials for f = 0 also match the experimental
data quite well. This indicates that to first order the compression of a composite of tuff and
water can be modeled by demanding pressure equilibrium between the tuff and water
constituents. Consequently, the local effects of deviatoric stress near pores in the solid
matrix which cause significant effective pressure in the dry material seem to be negligible in
the saturated material.

Figure 7 shows the predicted response for partially saturated soft material. The value
§ = 0.69 was determined by matching the point at which the pores collapse sufficiently to
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Fig. 6. Comparison of theory and experiment for nearby saturated response with S = 0.995.

become saturated. At this point the fluid pressure and total pressure both begin to increase
rapidly.

The remaming simulations show predictions of the Hugoniot curves for dry (S = 0),
partially saturated (S = 0.69) and nearly saturated (5 = 0.995) soft material. For deter-
mining the Hugoniot curves the internal energy ¢ is related to the density p, [see eqn (57)
and Table 1] and the pressure p by the expression

Poi= ‘jp(lr— g, (116)

which is used to determine the value of temperature. Since temperature increases along the
Hugoniot. it is necessary to specify values for the constants determining the function 4 in
the compaction and dilation surfaces (88) and (89). For the present purposes /iy, n. and
O (/) are taken to be
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By =10 °. n=01. Oy.(J) =2000K. (117a,b,c)

The constant value of 6y, is a reasonabie estimate of the melting temperature of silicon
dioxide (Young, 1994). Although no experimental data were used to determine Ay, and n,
the values (117a, b) will cause 4 rapid drop in the function / when the solid melts (6 = 8y,).

To evaluate the influence of melting on the compaction surface, the Hugoniot of the
dry material was calculated using the specifications (117) as well as using the specification
n = 0, which eliminates thermal dependence of / (since 4 = 1). Figure 8 shows that when
the solid melts (6 = 2 kK), the pressure and temperature on the Hugoniot drop rapidly as
the porosity decreases to a value near zero. As compression continues, the porosity ¢
continues to decrease and the magnitude of the pressure is controlled by the pressure
response of the nonporous solid, since /(¢) is singular at ¢p = 0. This predicted response is
physically reasonable because at melting the solid can no longer support nonzero deviatoric
stresses concentrated around open pores.

Figure 9 shows the Hugoniot curves for the specification (117). Also shown in Fig.
9(e) are curves of shock velocity D vs particle velocity u determined by the formulas

q1 2
D:LMKJJ . u=D(—J). (118a,b)

Notice that for both the partially and nearly saturated cases, the effective pressure p.
remains small. Also, notice that the porosity continues to decrease even when the effective
pressure becomes slightly negative and the dilation surface is activated.

6. SUMMARY

Constitutive equations have been developed to describe the thermomechanical response
of a porous brittle solid whose pores may be dry or partially filled with fluid. For simplicity
and the specific application of interest, the solid and fluid are assumed to have no relative
motion and are assumed to have the same temperature. This means that constitutive
equations for the composite of porous solid and fluid can be developed within the context
of the thermomechanical theory of a simple continuum. A functional form for the Helmholtz
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free energy of the composite is proposed in terms ot known Helmholtz free energies of the
nonporous solid and the fluid. and restrictions on the constitutive assumptions due to the
first and second laws of thermodynamics are satisfied. Also, the porosity is used to model
added compressibility observed in porous dry materials as well as to describe features of
the interaction of the fluid with the surrounding solid matrix. Although the constitutive
equations model distortional plasticity, which limits the magnitude of the deviatoric stress,
attention has been mainly focused on the development of specific equations for predicting
the response to hydrostatic external pressure.

Since the model attempts to predict physically reasonable response over a wide range
of pressure and temperature. it is necessary to provide a theoretical structure that can
accommodate known high pressure equations of state deduced from shock experiments. In
this regard, it is mentioned that the Helmholtz free energies of the solid and fluid constituents
use an Einstein formulation with variable specific heat, and are consistent with Mie-
Griineisen equations (for part of the pressure) which accommodate general expressions for
shock velocity as a function of particle velocity and Griineisen gamma as a function of
relative density.

Although the function / (¢) which characterizes compaction is determined by matching
dry compaction data, the predictions of the model compare well with experimental data
for pressure measured during isothermal compression of both partially saturated and near
fully saturated material. Furthermore, these simulations indicate that accurate prediction
of effective pressure p, is quite difficult in the high pressure regime because p. is the difference
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between two large pressures p and pfand because the predicted value of p, is quite sensitive
to the specific theoretical model for reversible porosity changes. This suggests that the
Terzaghi assumption that yield strength Y(p,) is a function of p, only will probably not be
very accurate in the high pressure regime. since p, cannot be predicted accurately there.
Consequently. it may be more desirable to use Y(p.) when the total pressure p remains
relatively small and then use a more complicated function of p and p. when p becomes
large. Also, it is important to understand the influence of damage evolution as the material
compacts and grains are presumably fractured.

Using a different model from that presented here, Attia and Rubin (1993) examined
the influence of soft and stiff unloading on spherically symmetric wave propagation. Their
results indicate that soft unloading [similar to that shown in Fig. 5(a)] creates a slower
release wave relative to stiff unloading [similar to that shown in Fig. 5(b)]. This slower
release wave causes the radial velocity time history at a given radial position to exhibit a
significantly greater peak velocity than that associated with the stiff unloading. Further-
more, preliminary spherically symmetric wave propagation calculations using the present
model indicate that different functional forms of the yield strength Y(p, p.) can significantly
change velocity profiles. However. substantial additional study is needed to determine what
functional forms may be most physically reasonable.

Acknowledgements— The authors would like 1o acknowledge helptul discussions with Drs L. Glenn and D. Young.
Part of this work was performed under the auspices of the United States Department of Energy at Lawrence



Modeling added compressibility of porosity 791

Livermore National Laboratory under Contract No. W-7405-ENG-48 while M. B. Rubin was on leave from
Technion, and part was supported specifically by the Geosciences Research Program of the Department of Energy
Office of Energy Research within the Office of Basic Energy Sciences. Division of Engineering and Geosciences.

REFERENCES

Attia. A. V. and Rubin. M. B. (1993). The effect of dilatancy on the unloading behavior of Mt. Helen tuff. In
Proc. Numerical Modeling For Underground Nuclear Test Monitoring Symp., Durango, CO, 23-25 March 1993.
Los Alamos National Laboratory Report No. LA-UR-93-3839.

Baer. M. R. (1988). Numerical studies of dynamic compaction of inert and energetic granular materials. ASME
J. Appl. Mech. 58, 36 43.

Baer, M. R. and Nunziato. J. W. (1986). A two-phase mixture theory tor the deflagation-to-detonation transition
(DDT) in reactive granular materials. /nr. J. Multiphase Flow 12, 861 -889.

Besseling. J. F. (1966). A thermodynamic approach to rheology. Proc. ILTAM Svmp. on Irreversible Aspects of
Continuum Mechanics and Transfer of Phyvsical Characteristics in Moving Fluids, Vienna (Edited by H. Parkus
and L. I. Sedov). pp. 16 53. Springer. Vienna.

Bhatt, J. J., Carroll. M. M. and Schatz. J. F. (1975). A spherical model calculation for volumetric response of
porous rocks. ASME J. Appl. Mech. 42, 363- 368.

Butkovich. T. R. (1973). A technique for generating pressure volume relations and failure envelopes for rocks.
Report No. UCRL-51441. Lawrence Livermore National Laboratory. Livermore, CA.

Carroll. M. M. (1980). Mechanical response of fluid-saturated porous materials. In Theoretical and Applied
Mechanics (Edited by F. P. J. Rimrott and B. Tabarrok), pp. 251-262. North-Holland, Amsterdam.

Carroll. M. M. and Holt. A. C. (1972a). Suggested modification ot the P-x model for porous materials. J. Appl.
Phys. 43, 759-761.

Carroll, M. M. and Holt. A. C. (1972b). Static and dynamic pore-collapse relations for ductile porous materials.
J. Appl. Phys. 43, 16261635

Carroll, M. M. and Kim. K. T. (1984). Pressure density equations tor porous metals and metal powders. Powder
Metall. 27, 153-159.

DiMaggio, F. L. and Sandler. 1. S. (1971}, Material model tor granular soil. ASCE J. Engng Mech. 97, 935-950.

Drumheller. D. S. (1987a). Hypervelocity impact of mixtures. fnr J. Inpact Engng 5, 261-268.

Drumbeller, D. S. (1987b). A theory for dyvnamic compaction ot wet porous solids. far. J. Solids Structures 23,
211-237.

Drumbheller. D. S. and Bedtord. A. (1980). A thermomechamcal theory for reacting immiscible mixtures. Arch.
Rational Mech. Anal. 73, 257 284,

Eckart. C. (1948). The thermodynamics of irreversible processes. 1V, The theory of elasticity and anelasticity.
Phys. Rer. 73, 373-382.

Embid. P. and Baer. M. (1992). Mathematical analyvsis of a two-phase continuum mixture theory. Continuum
Mech. Thermodyn. 4, 279312,

Eringen. A. C. (1994). A continuum theory of swelling porous clastic soils. Int. J. Engng Sci. 32, 1337-1349.

Flory, P. (1961). Thermodynamic relations tor high elastic materials. Trans. Faraday Soc. 87, 829-838.

Goodman, M. A. and Cowin. S. C. (1972). A continuum theory for granular materials. Arch. Rational Mech.
Anal. 44, 249266,

Green. A. E. and Naghdi. P. M. {1977). On thermodynamics and the nature of the second law. Proc. R. Soc.
Lond. A357, 253-270.

Green. A. E. and Naghdi. P. M. (1978%). The sccond Taw of thermodynamics and cyclic processes. ASME J. Appl.
Mech. 45, 487 492,

Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth : part I— Yield criteria
and flow rules for porous ductile materials. J. Engng Muaterials Tech. 99,2 15,

Heard. H. C.. Bonner. B. P.. Duba. A. GG.. Shock. R. N. and Stephens. ID. R. (1973). High pressure mechanical
properties of Mt. Helen. Nevada. tutf. Report No. UCID-16261. Lawrence Livermore National Laboratory,
Livermore. CA.

Herrmann. W. (1969). Constitutive equation tor the dvnamic compaction of ductile porous materials. J. Appl.
Phys. 40, 2490-2499.

Hill, T. L. (1960). An Introduction To Statistical Thermodvaannes. Addison-Wesley. Reading. MA.

Jaeger. ). C. and Cook. N. G. W. (1976). Fundamentals Of Rock Mechanics. Halsted Press, New York.

Leonov, A. I. (1976). Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta
15, 85-98.

Li, X. (1994). Elastic coeflicients for liquid- and gas-saturated porous media. /ni. J. Engng Sci. 32, 195-208.

Naghdi, P. M. and Trapp. J. A. (1975). The significance of tormulatung plasticity theory with reference to loading
surfaces in strain space. Inr. J. Engng Sci. 13, 785-797.

Nunziato. J. W. and Walsh, E. K. (1980). On ideal mutiphase mixtures with chemical reactions and diffusion.
Arch. Rational Mech. Anal. 73,285 311,

Oh, K.-H. and Persson. P.-A. (1989). A constitutive model tor the shock Hugoniot of porous materials in the
incomplete compaction regime. J. Appl. Phys, 66,4736 4742,

Ree, F. H. (1976a). Equation of state of the silicon dioxide syvstem. No. UCRL-52153. Lawrence Livermore
National Laboratory. Livermore, CA.

Ree, F. H. (1976b). Equation of state of water, No. UCRL-32190. Lawrence Livermore National Laboratory,
Livermore. CA.

Reser, M. K. (1979). Phasc Diagrams for Ceramists. 3th prinung. The American Ceramic Society, Columbus,
OH.

Rice. J. R.and Tracey. DM 11969). On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys.
Solids 17, 201-217.



792 M. B. Rubin ¢7 al.

Rubin, M. B. (1987). An elastic- viscoplastic model for metals subjected to high compression. ASME J. Appl.
Mech. 54, 532-538.

Rubin, M. B. (1989). A time integration procedure for plastic deformation in elastic-viscoplastic metals. J. Appl.
Math. Phys. (ZAMP) 40, 846--871.

Rubin, M. B. (1990). An elastic-viscoplastic model for large deformations of soils. ASCE J. Engng Mech. 116,
1995-2015.

Rubin, M. B. (1992). Hyperbolic heat conduction and the second law. /nt. J. Engng Sci. 30, 1665-1676.

Rubin, M. B. (1994a). Plasticity theory formulated in terms of physically based microstructural variables—I.
Theory. Int. J. Solids Structures 31, 2615 2634.

Rubin, M. B. (1994b). Plasticity theory formulated in terms of physically based microstructural variables—II.
Examples. Inr. J. Solids Structures 31, 2635--2652.

Rubin, M. B. and Attia, A. (1995). Calculation of hyperelastic response of finitely deformed elastic—viscoplastic
materials. fnt. J. Numer. Meth. Engng. In press.

Rubin, M. B. and Chen, R. (1991). Universal relations for elastically isotropic elastic-plastic materials. ASME J.
Appl. Mech. 58, 283-285.

Rubin, M. B. and Yarin. A. L. (1993). On the relationship between phenomenological models for elastic-
viscoplastic metals and polymeric liquids. J. Non-Newtonian Fluid Mech. 50, 79-88.

Wang, Z. P. (1994). Void growth and compaction relations for ductile porous materials under intense dynamic
general loading conditions. Int. J. Solids Structures 31, 2139-2150.

Young, D. A. (1994). Private communication. Lawrence Livermore National Laboratory.

APPENDIX A

In order to conveniently represent the various possible loading and unloading conditions associated with the
surfaces ¢. g.. gq in eqn (27). it is desirable to first define the following functions :
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o x, ' s co
.= - P’f" 1429 B;'(~5.+ 9. K]. o = —{“j} (Ale)
CETRE S S .
~ ol ol a
Go= |7 L g B 2B YB2pn |-Dy X4 (Alg)
oJ I % : ct
PR {}‘._.391*:2"—“3; Ly KJ. Gor = — [(—g—} (Alh,j)
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1t follows with the help of eqns (22) and (28) that
g=4¢-Tg,—T.3.. (A2a)
4. =g.—Tg.—T,g.. (A2b)
G = Ga—TGa =Ty (A2¢)
Now the loading and unloading behavior may be summarized by the following six cases:
Elastic response
g<0 or g=0 and ¢<0. and
g.<0 or g =0 and g, <0. and
g <0 or g;=0 and g, <0, (A3a)

r=o0 I, =0. (A3b,c)



Modehng added compressibility of porosity
Plastic distortional deformation without compaction or dilation

¢g=0 and ¢g>0. and
g <O or g.=0 and 4, < 0. and

go< O or g, =0 and g, <.
g0 =9 -4 Ve o =gy G G W
I'=gg,. I =0
Porous compaction without plustic distortional deformation
g<0 or g=0 and ¢-<0. and ¢ =0 and g.>0.
g, =4-(d.84.)q-.
=0 I'.=dq g
Porous dilation without plastic distortional deformation
g<0 or g=0 and ¢.<0. and ¢, =0 and g, >0,
g =4 {4y g.g-.
I'=0. [,=4g,4q,
Porous compaction with plastic distortional detormarnion
g =0 and ¢. >0. and y 0 and g, > W
g: =9 -4 420 doo = d (g gida.

d19a

G119~ 8290 GG G294

Porous dilation with plastic distortional deformation
g=0 and ¢, >0, and g, =0 and g, > 0.
g: =4 gy §o2)d> da = 4~ 4 GOy

1‘2\1:,‘/3 N
G1da: = G-9u G Ga: - G:Ga:

990

r =

793

(Ada)
(Adb.c)

(Add.e)

(ASa)
(ASb)

{A5¢.d)

(A7a)

(A7b.c)

(A7d.e)

(A8a)

{A8b.c)

(A8d.e)

In the above, it has been assumed that porous compaction and dilation are mutually exclusive processes.
Notice that: eqns (A7) reduce to eqns (A35) when ¢. vanishes: eqns (A7) reduce to eqns (A4) when g, vanishes:
eqns (A8) reduce to eqns (A6) when ¢. vanishes: and eqns (AR) reduce to eqns (A4) when g, vanishes. This
means that there is a smooth transition from cases where two vield surfaces are active to cases where only one
yield surface is active. Furthermore. it is noted that the constitutive equations for the yield surfaces must be

restricted so that
g, >0 for Case (Ad).

G- >0 for Case (A3

Gg: > 0 for Case (Ab).
F20.T,200(§.g-.-7d:g.)#0 forCase (A7).

'20.T,2044,ds-—3:-gs) # 0 for Case (A8).

(A9a)
{A9b)
(A9¢)
(AYd)

(A9%e)

Finally. it is mentioned that with the help of'eqns (A2). it follows that: eqns (A4) satisfy the consistency condition
g = 0:eqns (AS) satisfy the consistency condition g, = 0: eqns (A6) satisty the consistency condition g4 = 0 : eqns
(A7) satisfy the consistency conditions ¢ = 0. g. = 0: and egns (A8) satisfy the consistency conditions ¢ = 0,

gd:0~



